Extracellular superoxide dismutase inhibits hepatocyte growth factor-mediated breast cancer-fibroblast interactions
نویسندگان
چکیده
We have previously shown tumor suppressive effects of extracellular superoxide dismutase, EcSOD in breast cancer cells. In this study, an RTK signaling array revealed an inhibitory effect of EcSOD on c-Met phosphorylation and its downstream kinase c-Abl in MDA-MB231 cells. Moreover, an extracellular protein array showed that thrombospondin 1 (TSP-1), a scavenger of the c-Met ligand, hepatocyte growth factor (HGF) is significantly up-regulated in EcSOD overexpressing cells (Ec.20). We further determined the effects of EcSOD on HGF/c-Met-mediated cancer-fibroblast interactions by co-culturing normal fibroblasts (RMF) or RMF which overexpresses HGF (RMF-HGF) with MDA-MB231 cells. We observed that while RMF-HGF significantly promoted Matrigel growth of MDA-MB231, overexpression of EcSOD inhibited the HGF-stimulated growth. Similarly, a SOD mimetic, MnTE-2-PyP, inhibited HGF-induced growth and invasion of MDA-MB231. In addition, a long-term heterotypic co-culture study not only showed that Ec.20 cells are resistant to RMF-HGF-induced invasive stimulation but RMF-HGF that were co-cultured with Ec.20 cells showed an attenuated phenotype, suggesting an oxidative-mediated reciprocal interaction between the two cell types. In addition, we demonstrated that RMF-HGF showed an up-regulation of an ROS-generating enzyme, NADPH oxidase 4 (Nox4). Targeting this pro-oxidant significantly suppressed the activated phenotype of RMF-HGF in a collagen contraction assay, suggesting that RMF-HGF contributes to the oxidative tumor microenvironment. We have further shown that scavenging ROS with EcSOD significantly inhibited RMF-HGF-stimulated orthotopic tumor growth of MDA-MB231. This study suggests the loss of EcSOD in breast cancer plays a pivotal role in promoting the HGF/c-Met-mediated cancer-fibroblast interactions.
منابع مشابه
Overexpression of extracellular superoxide dismutase attenuates heparanase expression and inhibits breast carcinoma cell growth and invasion.
Increased expression of heparanase stimulates the progression of various human cancers, including breast cancer. Therefore, a deeper understanding of the mechanisms involved in regulating heparanase is critical in developing effective treatments for heparanase-overexpressing cancers. In this study, we investigated the potential use of extracellular superoxide dismutase (EcSOD) to enhance the in...
متن کاملImatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts.
Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inh...
متن کاملExtracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening.
There is good evidence that telomere shortening acts as a biological clock in human fibroblasts, limiting the number of population doublings a culture can achieve. Oxidative stress also limits the growth potential of human cells, and recent data show that the effect of mild oxidative stress is mediated by a stress-related increased rate of telomere shortening. Thus, fibroblast strains have dono...
متن کاملMaster regulators of FGFR2 signalling and breast cancer risk
The fibroblast growth factor receptor 2 (FGFR2) locus has been consistently identified as a breast cancer risk locus in independent genome-wide association studies. However, the molecular mechanisms underlying FGFR2-mediated risk are still unknown. Using model systems we show that FGFR2-regulated genes are preferentially linked to breast cancer risk loci in expression quantitative trait loci an...
متن کاملHSulf-1 inhibits angiogenesis and tumorigenesis in vivo.
We previously identified HSulf-1 as a down-regulated gene in several tumor types including ovarian, breast, and hepatocellular carcinomas. Loss of HSulf-1, which selectively removes 6-O-sulfate from heparan sulfate, up-regulates heparin-binding growth factor signaling and confers resistance to chemotherapy-induced apoptosis. Here we report that HSulf-1 expression in MDA-MB-468 breast carcinoma ...
متن کامل